EE 508
Lecture 13

Statistical Characterization of
Filter Characteristics



Review from Last Time
Components used to build filters are not precisely

predictable
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Temperature Variations
Manufacturing Variations
Aging

Model variations

» Different approaches are used to address each of these problems
» Manufacturing variations is one of the most challenging problems for
building integrate filters and will be the focus of this lecture



Review from Last Time

Wafers are processed in “batches” or “lots” of 20 to 40 wafers
and variations occur over time (process not completely
stationary) and over location

These variations are often the major contributor to process J\/\/\/\_
variability and can be in the +30% range or larger R(t3)

These variations often look like random variations



Within a batch, individual wafers are subjected to some
variability during processing

Temperature may vary with position of wafer in the boat during diffusion

Environment may vary with position of wafer in boat during diffusion or other
processing steps

This variation causes characteristics of components to vary from wafer-to-wafer

These variations often look like random variations



Environment may vary across individual wafers due to
gradients in environmental variables during processing

This variation causes characteristics of components to vary from die to
die on a wafer

These variations often look like random variations



Smaller variations may occur across individual die due to
gradients in environmental variables during processing
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This variation causes characteristics of components to vary across a die

These variations often look like random variations



Even smaller variations may occur across individual closely
placed devices due to local gradients and local random
processing variations

This variation introduces local gradients in device characteristics as well as
local random variations

The direction and magnitude of the local gradients are random variables

The local random variations are also random variables



Effects of manufacturing variations on components
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» Arigorous statistical analysis can be used to analytically predict how
components vary and how component variations impact circuit
performance
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» Montecarlo simulations are often used to simulate effects of component
variations
Requires minimal statistical knowledge to use MC simulations
Simulation times may be prohibitively long to get useful results
Gives little insight into specific source of problems
Must be sure to correctly include correlations in setup

» Often key statistical information is not readily available from the foundry



Modeling process variations in semiconductor processes

AAAN
R

X= XNOM Txreroc PXrwarer TXroie TXRLcrRAD TXRLVAR

Xyowm IS the nominal value of the parameter (typically TT) and is a constant
and part of the standard device model in a given process

Xrproc IS @ random variable that changes from one “lot” of wafers to another
Xrwager 1S @ random variable that changes from one wafer to another in a batch

Xrpie 1S @ random variable that changes from die to another on a wafer

XrLarAp IS @ random variable that is comprised of a magnitude and direction

which are themselves both random variables and characterizes very local
variations on a die

Xrivar IS @ random variable that characterizes very local variations on a die (



Xrproc IS @ random variable that changes from one “lot” of wafers to another

uncorrelated

Correlated
(and equal)

Correlated
(and equal)

Xrwarer 1S @ random,variable that changes from one wafer lo another in a batch
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uncorrelated
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Xrpe IS @ random variable that changes from die to another on a wafer
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Correlated Correlated
(and equal) (and equal)

(correlated part a gradient effect with large radius of curvature)



XrLGrAD IS @ random variable that is comprised of a magnitude and direction

which are themselves both random variables and characterizes very local
variations on a die

XrLvaR IS @ random variable that characterizes very local variations on a die
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XRLVAR uncorrelated
ﬁ

XRLGRAD partially correlated

XrLcrap Correlated (and equal)
ﬁ ﬁ

Xruvar Uncorrelated

XrLerap Correlated (and equal)

Xrivar Uncorrelated



Modeling process variations in semiconductor processes
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X= XNOM Txreroc PXrwarer TXroie TXRLcrRAD TXRLVAR

XRPROC> xRWAFER, XRDIE» *RLVAR Often assumed to be GaUS|an W|th Zero mean

Magnitude of xg grap IS Usually assumed Gaussian with zero mean, direction
is uniform from 0° to 360°

GPROC >> GWAFER >> GDIE
GDIE >> O-LVAR

O e >> G|GRAD|

1

JArea

o, = Perimeter

12

O,vur  Strongly dependent upon area OLrar

Relative size between 0,4, and 0,grap dependent upon A, P, and process



Effects of layout on local random variations
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Drawn and Actual Features for MOS Transistor

Variations also occur vertically in both oxide thickness and doping
levels/profiles and often these will dominate the lateral effects



Modeling process variations in semiconductor processes
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» Statistics associated with value of dimensioned parameters (poles, GB,
SR,R,C,transresistance gains, transconductance gains, ... dominated by

XRPROC)

« Statistics associated with matching/sensitive dimensionless parameters
such as voltage or current gains, component ratios, pole Q, ... (almost

always closely placed) dominated by xg, grap @Nd xgyar (Pecause locally xgproc,
Xrwarer, Xroie are all correlated and equal)

« Gradients are dominantly linear if spacing is not too large

« Special layout techniques using common centroid approaches can be
used to eliminate (or dramatically reduce) linear gradient effects so, if
employed, matching/sensitive parameters dominated by xg,\ar but
occasionally common centroid layouts become impractical or areas
become too large so that gradients become nonlinear and in these cases
gradient effects will still limit performance

» Higher-order gradient effects can be eliminated with layout approaches that
cancel higher “moments” but area and effort may not be attractive



Be sure correct statistical information is available when doing
a statistical analysis using either analytical or Montecarlo
methods R
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« Some statistics associated with making many measurements over many
devices over many lots of wafers

« Some statistics associated with many measurements in a particular
process run

« Some statistics associated with making many measurements across a
wafer

« Some statistics associated with making many measurements on closely-
placed devices

« Some statistics associated with making many measurements on closely-
placed devices that have common-centroid layouts

« Some statistics presented (particularly in literature or occasionally in PDK)
with limited information about how data was gathered



Statistical Modeling of dimensioned parameters

Example:

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

X Vour
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Assume the process variables are zero mean Gaussian variable
with standard deviations given by

=02 o, =01

RN oM CN oM

Assume further that the effects of all other random components can be neglected

X = Xiom Freroc Tawmeer Torbe T PResar

O

RRPR ocC



Statistical Modeling of dimensioned parameters

Example (cont):

Determine the standard deviation of the pole frequency (or band edge) of
the first-order passive filter.

N Vour
1
Vin ~ C p= RC
Assume the process variables are zero mean Gaussian variable
with standard deviations given b
JVEn DY =02 o. =0.1
RRPROC C’RPROC
RNOM CNOM
R = Ryom*Reroc C = Crnom*Crroc

1 1

RNOM +RPROC ) (CNOM +CPROC ) RNOMCNOM + RNOM(:PROC + CNOMRPROC + RPROCCPROC

"

* pis a multivariate random variable

» The pdf of p is extremely complicated



. Determine the standard deviation of the pole frequency
Example (Cont)' (or band edge) of the first-order passive filter.

R

Vour

N
~ C P"Re

3|

Theorem: The sum of uncorrelated Gaussian random variables is a
multivariate Gaussian random variable

Theorem: If X, ... X, are uncorrelated random variables with standard
deviations 04, 0,, ... 0,,, and a,,a,, ... a,, are constants, then the standard

deviation of the random variable ¥ = Z‘aixi Is given by the expression

m
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Oy = \/zai O
i=1




Example (cont): Determine the standarq deviation of t_he pole frequency
(or band edge) of the first-order passive filter.

R

Vourt
1
Vi e -
@F = @ P RC
l

The random variable p can be approximated by

1
Ryom + Reay )(CNOM +Chruy )

(RRAN = RNOM + RRPROC + RRWAFER + RRDIE + RRLGRAD + RRLVAR and CRAN = CNOM + CRPROC + CRWAFER + CRDIE + CRLGRAD + CRLVAR )

T

Unfortunately the pdf p which is the reciprocal of the product of sums of
Gaussian variables is very difficult to obtain.

Observe p can be expressed as:

1 1 1
N
(RNOM +RRAN)(CNOM + CRAN) RyomCrom {IJF Ry v }{IJF Crav }

NOM CNOM



Example (cont): .

Vour
Determine the standard deviation of the pole frequency D= i
(or band edge) of the first-order passive filter. Y T & RC

1 1 1
=
(RNOM +RRAN)(CNOM +CRAN) RNOMC:NOM |:1+ RRAN :||:1+ CRAN :|

NOM CNOM

But Rran<<Rnom @nd Cran<<Cyom

It thus follows from a truncated power series expansion of the two-variable fraction

Neglecting the product of two small quantities
1

RNOM(:NOM RNOM CNOM

These operations were used to linearize p in terms of the random variables !

Note that p is the sum of two Gaussian random variables that are assumed to be
uncorrelated so p is also approximately Gaussian



Example (cont):

Determine the standard deviation of the pole frequency Vi

(or band edge) of the first-order passive filter.

pz( 1 ](I_RRAN_CRANJ
RNOMCNOM RNOM CNOM

It thus follows from the theorem that

_ 1 2 2
o, = oL +o;
RyonC s Caa

1

But the nominal value of the pole is Pnom =
IRNOMc;NOM

It thus follows that

_ 2 2
o P _\/GRRAN +GCRAN

PnoM Rnowm Cnowm

P ~N| Lo |
pNOM PNnowm

Observe:




Example (cont):
Determine the standard deviation of the pole frequency
(or band edge) of the first-order passive filter.

Vin

A}

Cnowm 47

Pnom

o, =4027+0.1> =0.22 I



Example (cont):

R Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

1. Determine the 30 range in the pole location

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

3. What can the designer do to tighten the band edge of this filter?



Example (cont):

R Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

1. Determine the 30 range in the pole location

The 30 range is simply 0.34 < P <1.66

Pnowm

So, if the nominal pole location is 10KHz, the average value of the pole location
from lot to lot will vary (in the 30 sense) between 3.4KHz and 16.6KHz



Example (cont):
Vour 1

P Re

Vin

A}
/|
@)

‘ .

~/0.2* +0.1> =0.22

p
Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

(1
Observe a 10% window is — |0, =0450
22
: Pnom Pnom
Recall _P_ _N Lo | Fora ko 4 760
Prowm Prom

window the probability of being inside that
window is the area under the pdf curve
between 1—- ko and 1+ko

P4

~ pNOM
—INom____ N(0,1
p==" (0.1)

¥ <

Observe

1-ko 1 1+ko

p
Pnom




Example (cont):

Vour 1
Vin -~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

1
Observe a 10% window is (2—2)0 » =0.450
5-NOA) " ®
1-0450 , <—<1-0450 045 < p < 0.45
Pnom Prnom Prnom P
5:pNOM

\ B

For a Gaussian variable, this area is given by A

8,00= 2Fuyo1 (K) -1 = 2Fyy (0.45)—1

prob



Offset Voltage Distribution

Pdf of zero-mean Gaussian distribution

A f(x)
X
-ko ko >
Percent between: +0 68.3%
+20 95.5%

+30 99.73%



£ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 050000 0.50399 050798 051197 0.51593 0.51994 052392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 054776 055172 0.55567 0.55962 0.56356 056748 0.57142 0.57535
0.2 057926 0.58317 058706 059095 0.59483 0.59871 0.60257 060642 0.61026 0.61409
0.3 061791  0.62172 0625352 062930 0.63307 m 0.64058 064431 0.64803 0.65173
0.4 065542 0.65810 066276 066640 0.67003 0.67364 067724 0.68082 0.68439 0.68793
0.5 0.60146 0.59497 069847 0.70194 070540 Dnveeed 071226 071566 0.71904 0.72240
0.6 0.72575 0.72807 073237 073565 0.738591 0.74215 0.74537 0.74857 0.75175 0.754580
0.7 0.75804 0.78115 076424 0476730 0.77035 0.77337 077637 077935 0.78230 0.78524
0.8 0.78814 0.79103 079389 079673 0.79955 0.80234 0.80511 080785 0.81057 0.81327
0.8 081584 0.81858 082121 082381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 084134 0.84375 084614 0384849 0.850863 0.85314 0.85543 083768 0.85993 0.86214
11 0.86433 0.86650 086864 087076 0.B87286 0.87453 0876598 087900 0.88100 0.882598
1.2 0.88403 0.88686 088877 083065 0.89251 0.89435 0.89617 089796 0.88973 0.890147
1.3 090320 0.904590 090658 090824 0.90988 0.891149 0.91308 08914686 0.91621 0.81774
1.4 091924 0.92073 092220 092364 092507 0.892647 0.92785 092922 0.93056 0.83189
1.5 093319 0.93448 0893574 093699 0.93822 0.83943 094062 094178 0.94285 0.84408
1.6 094520 0.94630 094738 0594845 0.94950 0.85053 095154 0932534 095352 0.895449
1.7 095543 0.95637 095728 0595818 0.95307 0.895994 0.96080 096164 096246 0.896327
1.8 096407 0.96485 096562 096638 096712 0.96784 0.96856 096926 0.96995 0.97062
1.8 0497128 0.871893 0897257 0897320 0.897361 0.87441 0.97500 087558 0.97615 0.87670
2.0 097725 0597776 097831 0597882 0.97932 0.87982 0.98030 098077 098124 0.88169
2.1 098214 0.98257 098300 0593341 0.98362 0.98422 0.98481 0.98500 098337 0.98574
2.2 0598610 0.98645 0598679 0598713 098745 0.88778 0.988059 0.898840 0.98870 0.88899
2.3 098928 0.98956 098983 0599010 0.99036 0.99061 0.99086 0899111 099134 0.99158
24 099160 0.99202 0395224 099245 (0.99266 0.89286 0.99305 099324 099343 0.89361
2.5 099379 0.99396 0399413 099430 0.99446 0.89461 099477 099492 099306 0.89520
26 099534 0.99547 03995360 0939573 0.99565 0.89598 0.99609 099621 0.99632 0.899643
2.7 099653 0.99664 099674 099683 0.99693 0.89702 0.99711 099720 099728 0.89736
2.8 099744 0.99752 099760 059976y 099774 0.89781 0.99788 0899795 0.99801 0.899807
29 099813 0.99819 095825 099831 0.99836 0.89841 0.99846 0.99851 0.99856 0.899861
3.0 099865 0.99869 095874 0939878 0.99362 0.89886 0.99885 099893 0.99896 0.83300
an 099903 0.99506 03599910 099913 099916 0.89918 0.99921 099924 099926 0.89929
3.2 099931 0.99534 099936 099938 0.99940 0.899942 0.99944 0.99946 0.99948 0.89950
3.3 099952 0.99553 099955 0599957 0.99958 0.899960 0.99961 0899962 0.99964 0.89965
34 099966 0.99968 099969 0599970 0.99971 0.899972 099973 099974 099975 0.899975
3.5 099977 0.99976 099978 099979 0.899360 0.89981 0.995981 0.99982 0.99983 0.89983
36 099964 0.99985 099985 099986 0.99366 0.89987 099987 0.99988 0.99388 0.89989
3.7 0959969 0.995590 099950 053930 0.99991 0.893391 0.99992 099992 0.99952 0.89992
3.8 05959953 0.99593 05959953 059994 0.99954 0.599994 0.99954 0899995 0.99995 0.89995
3.9 099995 0.99995 099996 099996 0.99996 0.899996 0.99996 099996 0.99997 0.899997
4.0 099997 0.99997 099997 099997 0.99997 0.89997 0.99998 099998 0.999938 0.899998



Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

2. Determine the percent of the process lots that will have a pole with
mean that is within 10% of the nominal value

8,0= 2For (0.45)-1

prob

0, .= 20.6736—-1=0.347

prob

Thus, approximately 35% of the wafer lots will
have a pole within 10% of the nominal value

\ B




Vour 1
Vin ~ C P~ Re
’ o, =4022+0.1> =0.22

Pnom

3. What can the designer do to tighten the band edge of this filter?
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Stay Safe and Stay Healthy !
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